Aufgabe 8.1.9

Lineare Temperaturabhängigkeit des Widerstandes

Zwei Adern von \( 0{,}9 \, \mathrm{mm} \) Durchmesser eines im Erdreich liegenden Fernsprechkabels zeigen Kurzschluss gegeneinander. Zur Fehlerortbestimmung misst man am Kabelanfang zwischen ihnen einen Widerstand von \( 13{,}1 \, \mathrm{Ω} \).

a)An welcher Stelle s muss aufgegraben werden, wenn \( 20 \, \mathrm{°C} \) im Erdreich angenommen werden (\( ρ_{20} = 0{,}0178 \, \mathrm{Ω mm^2/m}, α_{20} = 3{,}9 · 10^{-3} \mathrm{K}^{-1} \))?

\( s = \)

(Bedienhinweise)

b)Um welche Strecke \( \mathrm{Δ}s \) liegt der Fehlerort vom vermeintlichen entfernt, wenn die mittlere Temperatur im Erdreich nur \( 12 \, \mathrm{°C} \) beträgt?

\( \mathrm{Δ}s = \)

(Bedienhinweise)

Lösungshinweis:
Gleichung (62) kann umgesetzt werden auf den spezifischen Widerstand:

\( ρ_{20} = (1 + α_{20}(ϑ - 20 \, \mathrm{°C})) \)

die Kabellängen folgen aus der Bemessungsgleichung (52)

\( R = ρ·\dfrac{l}{A} \)