Formelsammlung

Elektrische Ladung

\( [Q] = 1 \, \mathrm{Coulomb} = 1 \, \mathrm{C} = 1 \, \mathrm{As} \)
(1)

Elektrischer Strom \( I \)

\( I = \dfrac{\mathrm{Δ}Q}{\mathrm{Δ}t} \)
(2)
\( i(t) = \lim \limits_{\mathrm{Δ}t \to 0} \dfrac{\mathrm{Δ}Q}{\mathrm{Δ}t} = \dfrac{\mathrm{d}Q(t)}{\mathrm{d}t} \)
(3)
\( [I] = 1 \, \mathrm{Ampere} = 1 \, \mathrm{A} \)
(4)

Ladung und Strom

\( Q(t) = Q(t_0) + \displaystyle\int\limits_{t_0}^t i(t) \: \mathrm{d}t \)
(7)

Stromdichte \( \vec{J} \)

\( \left| \vec{J}_k \right| = J_k = \dfrac {\mathrm{Δ}I_k} {\mathrm{Δ}A_{k⟂}} \)
(8)
\( J = \dfrac {\mathrm{d}I} {\mathrm{d} A_{⟂}} \)
(12)
\( I = \displaystyle\int \limits_{\mathrm{A}} \vec{J} \mathrm{d} \vec{A} \)
(13)
\( J = \dfrac {I} {A_{⟂}} \)
(14)
\( [J] = \dfrac {[I]} {[A]} = 1 \dfrac {\mathrm{A}} {\mathrm{m}^2} \)
(15)
\( [J] = 1 \dfrac {\mathrm{A}} {\mathrm{mm}^2} \)
(16)

Kirchhoffscher Knotenpunktsatz

\( \displaystyle\sum \limits_{v=1(\mathrm{vzb})}^\mathrm{m} I_v = 0 \)
(17)
\( \displaystyle\sum \limits_{\mathrm{μ}=1}^\mathrm{m} I_{\mathrm{μ}(\mathrm{hin})} = \displaystyle\sum \limits_{v=1}^\mathrm{n} I_{v(\mathrm{hin})} \)
(18)
\( \displaystyle\oint \limits_{\mathrm{A}} \vec{J} \mathrm{d} \vec{A} = 0 \)
(19)

Elektrische Feldstärke

\( \vec{F} = Q·\vec{E} \)
(20)
\( E = \dfrac {F}{Q} \)
(21)

Spannung \( U \) und Potenzial \( φ \)

\( U_{12} = U = \dfrac {\mathrm{Δ}W} {Q} = \displaystyle\int \limits_{\mathrm{P}_1}^{\mathrm{P}_2} \vec{E} \: \mathrm{d} \vec{l} = \displaystyle\int \limits_1^2 \vec{E} \: \mathrm{d} \vec{l} \)
(23)
\( |\vec{E}| = E = \dfrac {\mathrm{Δ}U} {\mathrm{Δ}l^*} \)
(24)
\( \begin{array}{l} φ_1 = \dfrac {W_{\mathrm{pot}(\mathrm{P}_1)}} {Q} = \displaystyle\int \limits_{\mathrm{P}_1}^{\mathrm{P}_0} \vec{E} \: \mathrm{d} \vec{l} \\ φ_2 = \dfrac {W_{\mathrm{pot}(\mathrm{P}_2)}} {Q} = \displaystyle\int \limits_{\mathrm{P}_2}^{\mathrm{P}_0} \vec{E} \: \mathrm{d} \vec{l} \end{array} \)
(26)
\( U_{12} = φ_1 - φ_2 \)
(27)
\( [U] = \dfrac {[W]} {[Q]} = 1 \, \mathrm{kg} \dfrac {\mathrm{m}} {\mathrm{s}^2} · \mathrm{m} · \dfrac {1} {\mathrm{As}} = 1 \, \mathrm{kg} \dfrac {\mathrm{m}^2} {\mathrm{As}^3} = 1 \, \mathrm{Volt} = 1 \, \mathrm{V} \)
(28)
\( [\mathrm{φ}] = 1 \, \mathrm{V} \)
(29)
\( [E] = \dfrac {[U]} {[l]} = 1 \dfrac {\mathrm{V}} {\mathrm{m}}, 1 \dfrac {\mathrm{V}} {\mathrm{cm}}, 1 \dfrac {\mathrm{V}} {\mathrm{mm}} \)
(30)

Kirchhoffscher Maschensatz

\( \displaystyle\sum \limits_{v=1}^{n} U_{v(\mathrm{vzb})} = 0 \)
(32)

Ohmscher Widerstand

\( \dfrac{U_1}{I_1} = \dfrac{U_2}{I_2} = \dotsc = \dfrac{U_\mathrm{n}}{I_\mathrm{n}} = \mathrm{konst}. \)
(42)
\( R = \dfrac{U_1}{I_1} = \dfrac{U_2}{I_2} = \dfrac{U}{I} \)
(43)
\( [R] = \dfrac{[U]}{[I]} = 1 \dfrac{\mathrm{V}}{\mathrm{A}} = 1\;\mathrm{Ohm} = 1 \, \mathrm{Ω} \)
(44)
\( U = RI \)
(45)
\( I = \dfrac{U}{R} \)
(46)

Leitwert

\( G = \dfrac{1}{R} \)
(47)
\( [G] = 1 \dfrac{\mathrm{A}}{\mathrm{V}} = 1\;\mathrm{Siemens} = 1 \, \mathrm{S} \)
(48)

Bemessungsgleichung

\( R = \dfrac{U}{I} = \dfrac{\displaystyle\int \limits_l \vec{E} \: \mathrm{d} \vec{l}}{\displaystyle\int \limits_A \vec{J} \: \mathrm{d} \vec{A}} = \dfrac{E·l}{J·A} = \dfrac{E·l}{κ·E·A} = \dfrac{l}{κ·A} \)
(49)
\( [κ] = \dfrac{[l]}{[R][A]} = 1 \, \mathrm{S} \dfrac{\mathrm{m}}{\mathrm{mm}^2} \)
(50)
\( ρ = \dfrac{1}{κ} \)
(51)
\( R = ρ · \dfrac{l}{A} \)
(52)
\( [ρ] = \dfrac{[R][A]}{[\mathrm{l}]} = 1 \, \mathrm{Ω}\dfrac{\mathrm{mm}^2}{\mathrm{m}} \)
(53)

Leistung

\( P = U·I = R·I^2 = \dfrac{U^2}{R} \)
(56)
\( [P] =[U][I] = 1 \, \mathrm{VA} = 1 \, \mathrm{Watt} = 1 \, \mathrm{W} \)
(57)
\( [W] = 1 \, \mathrm{Wattsekunde} = 1 \, \mathrm{Ws} \)
(58)

Temperaturabhängigkeit

\( R_{ϑ} = R_\mathrm{a} (1 + α_\mathrm{a} \mathrm{Δ} ϑ) \)
(62)
\( R_\mathrm{ϑ} = R_a (1 + α_\mathrm{a}·\mathrm{Δ}ϑ+β_\mathrm{a}·(\mathrm{Δ}ϑ)^2) \)
(63)

Heißleiter

\( R_\mathrm{ϑ} = R_\mathrm{N} \mathrm{e}^{B \left(\frac{1}{T} - \frac{1}{T_\mathrm{N}}\right)} \)
(67)

Varistorkennlinie

\( \dfrac{I}{\mathrm{1A}} = \left(\dfrac{U}{B}\right)^{n} \)
(69)
\( n = \dfrac{\log\left(\dfrac{I_2}{\mathrm{1A}}\right) - \log\left(\dfrac{I_1}{\mathrm{1A}}\right)}{\log\left(\dfrac{U_2}{\mathrm{1V}}\right) - \log\left(\dfrac{U_1}{\mathrm{1V}}\right)} \)
(71)
\( \dfrac{R_1}{1 \, \mathrm{Ω}} = \dfrac{\dfrac{U_1}{1 \, \mathrm{V}}}{\dfrac{I_1}{1 \, \mathrm{A}}} = \left(\dfrac{B}{\mathrm{1V}}\right)·\dfrac{\left(\dfrac{U_1}{B}\right)}{\left(\dfrac{U_1}{B}\right)^{n}} = \left(\dfrac{B}{1 \, \mathrm{V}}\right) · \left(\dfrac{U_1}{B}\right)^{\left( 1-n \right)} \)
(72)
\( r = \dfrac{\mathrm{d}U}{\mathrm{d}l} \bigg|_{U_1,I_1} = \dfrac{1}{n}·B·\dfrac{1}{\mathrm{1A}}·\left(\dfrac{I}{\mathrm{1A}}\right)^{\left(\frac{1}{n} -1\right)} \bigg|_{U_1,I_1} = \dfrac{1}{n}·\dfrac{\mathrm{1V}}{\mathrm{1A}}·\left(\dfrac{B}{\mathrm{1V}}\right) · \left(\dfrac{U_1}{B}\right)^{\left( 1-n \right)} \),
(74)

Halbleiterdiode

\( I = I_\mathrm{S} \left(\mathrm{e}^{\left(\frac{U}{m · U_\mathrm{T}}\right)} -1 \right) \)
(75)
\( U_\mathrm{T} = \dfrac{\mathrm{k}T}{e} \)
(76)

Fotodiode

\( I = I_\mathrm{S} \left(\mathrm{e}^{\left(\frac{U}{m · U_\mathrm{T}}\right)} -1 \right) - I_\mathrm{ph} (E_\mathrm{V}) \)
(77)
\( U_\mathrm{L} = m·U_\mathrm{T}·\ln\left(\dfrac{I_\mathrm{ph}}{I_\mathrm{S}} + 1\right) \)
(78)

Ideale Spannungsquelle

\( U(I) = U_\mathrm{L} = U_\mathrm{q} \)
(79)

Ideale Stromquelle

\( I(U) = I_\mathrm{K} = I_\mathrm{q} \)
(82)

Lineare Quelle

\( \dfrac{U}{U_\mathrm{L}} + \dfrac{I}{I_\mathrm{K}} = 1, \)
(85)
\( U = U_\mathrm{L} - \dfrac{U_\mathrm{L}}{I_\mathrm{K}} I = U_\mathrm{q} – R_\mathrm{i} I \)
(86)
\( U_\mathrm{L} = U_\mathrm{q} \)
(87)
\( R_\mathrm{i} = \dfrac{U_\mathrm{L}}{I_\mathrm{K}} \)
(88)
\( U = \dfrac{U_1 I_2 – U_2 I_1}{I_2 - I_1} - \dfrac{U_1 – U_2}{I_2 - I_1} I = U_\mathrm{q} – R_\mathrm{i} I \)
(90)
\( U_\mathrm{q} = \dfrac{U_1 I_2 – U_2 I_1}{I_2 – I_1} \)
(91)
\( R_\mathrm{i} = \dfrac{U_1 - U_2}{I_2 – I_1} \)
(92)
\( I = I_\mathrm{K} - \dfrac{I_\mathrm{K}}{U_\mathrm{L}} U = I_\mathrm{q} - G_\mathrm{i} U \)
(93)
\( G_\mathrm{i} = \dfrac{I_\mathrm{K}}{U_\mathrm{L}} = \dfrac{1}{R_\mathrm{i}} \)
(94)
\( I_\mathrm{q} = I_\mathrm{K} = G_\mathrm{i} U_\mathrm{q} = \dfrac{U_\mathrm{q}}{R_\mathrm{i}} \)
(95)

Arbeitspunkt

\( I = \dfrac{U_\mathrm{q}}{R_\mathrm{i} + R_\mathrm{a}} \)
(97)
\( U = R_\mathrm{a} I = U_\mathrm{q} \dfrac{R_\mathrm{a}}{R_\mathrm{i} + R_\mathrm{a}} \)
(98)
\( \begin{array}{l} U = U_\mathrm{L} = U_\mathrm{q}, \\ I=0 \end{array} \)
(99)
\( \begin{array}{l} I = I_\mathrm{K} = \dfrac{U_\mathrm{q}}{R_\mathrm{i}}, \\ U=0 \end{array} \)
(100)

Normierte Kennlinien

\( \dfrac{U}{U_\mathrm{L}} = \dfrac{\dfrac{R_\mathrm{a}}{R_\mathrm{i}}}{1 + \dfrac{R_\mathrm{a}}{R_\mathrm{i}}} \)
(101)
\( \dfrac{I}{I_\mathrm{K}} = \dfrac{1}{1 + \dfrac{R_\mathrm{a}}{R_\mathrm{i}}} \)
(102)

Leistungsumsatz

\( P_\mathrm{a} = U·I = R_\mathrm{a}·I^2 = U_\mathrm{L} · I_\mathrm{K} · \dfrac{ \dfrac{R_\mathrm{a}}{R_\mathrm{i}} }{ \left( 1 + \dfrac{R_\mathrm{a}}{R_\mathrm{i}} \right)^2 } \)
(103)

Anpassung

\( \dfrac{R_\mathrm{a}}{R_\mathrm{i}} = 1 \)
(105)
\( P_{\mathrm{a}_{\mathrm{max}}} = \dfrac{1}{4} · U_\mathrm{L} · I_\mathrm{K} = \dfrac{1}{4} P_\mathrm{Q} \)
(106)
\( U = \dfrac{1}{2} U_\mathrm{L} = \dfrac{1}{2} U_\mathrm{q} \)
(107)
\( I = \dfrac{1}{2} I_\mathrm{K} \)
(108)

Wirkungsgrad

\( η = \dfrac{P_\mathrm{a}}{P_\mathrm{a} + P_\mathrm{i}} = \dfrac{R_\mathrm{a} · I^2}{R_\mathrm{a} · I^2 + R_\mathrm{i} · I^2} = \dfrac{ \dfrac{R_\mathrm{a}}{R_\mathrm{i}} }{1 + \dfrac{R_\mathrm{a}}{R_\mathrm{i}}} \)
(110)

Leistungsbilanz

\( \displaystyle\sum_{v (\mathrm{vzb})}^{} P_v = 0 \)
(111)